Information Computer System giving support in recovered results of nematological analysis of plant germplasm imported by Brazil from European Countries

Recursos Genéticos e Biotecnologia ¹. <u>Vandor R. V. Rissoli</u>; ². Renata C. V. Tenente & ³. Henrique I. Nascimento.

1 Embrapa Recursos Genéticos e Biotecnologia, Cx. Postal 02372, Parque Estação Biológica, CEP: 70849-970, Brasília, DF, email: <u>renata@cenargen.embrapa.br</u>.

The LABORATORY OF NEMATOLOGY of Embrapa Genetic Resources and Biotechnology has been analysing imported plant germplasm for nematodes.

In this context, the **Computer Information System** was developed on a nematological database to give support to the germplasm nematological analysis data, covering the period of **1981** to **2003**.

Table 2. Results from the survey in Germplasm Information System, refer to nematologicalanalysis of imported materials from European Countries, during 1981 to 2003.

Plant Material	N ⁰	N ⁰	Detected Nematode	
	Analysed	Infected		
BELGIUM				
Salix sp.	37	37	Aphelenchoides sp.	
DENMARK				
Forago	1	1	Anholonchoides sn	

The aid of **Computer Information System** to this Laboratory is very important to organize databases with accuracy and to make it available for people which are interested in a specific subject.

The material from the European Countries also were registered on this Computer Information System.

MATERIAL AND METHODS

The **Germplasm Computing System** was elaborated using the fourth generation of language that gave a fast development, following the existent stardand in database.

The language also contributed in friendly interface elaboration for the researcher interactions of **Embrapa Genetic Resources and Biotechnology.**

The Computer System was registered all detected plant-parasitic nematodes in the last 22 years, imported from many different **European Countries**.

The recovered data were regarding to specific germplasm accession in separated for each germplasm introduction in a year (Figure 1).

The database included materials exchanged between 1981 to 2003, and identified the common and scientific name of germplasm, origin, destination, the number of analysed and infected acessions and the name of detected nematodes.

EMBRAPA Recursos Genéticos e Biotecnologia	
Janela	
🚮 Germoplasma	2
Código InternoAnoProduto10391983Alho	
País	
Itália	Examinados Contaminados
Insituição	Detectado
FAO - Roma	
Destino	Aphelenchus sp.,
CNPH-DF	Tigotona sp.
Observação	
Processo:390/83	
Registro: 3/3	

i ulaye			Aprileienchoudes sp.	
<i>Lolium</i> sp.	4	1	Aphelenchoides sp.	
Vegetables	33	33	Ditylenchus terricolus	
ENG	LAND		· ·	
Pinus spp.	331	15	Ditylenchus sp.	
FINL	AND			
Barley	1	1	Aphelenchoides besseyi; Meloidogyne	
			sp.	
FRA	NCE			
Grape	31	15	Aphelenchoides bicaudatus;	
			Aphelenchus sp.; Trichodorus sp.	
Melon	48	1	Ditylenchus sp.	
Panicum spp.	600	5	Aphelenchoides sp.	
Pineapple	11	5	Aphelenchoides sp.; Helicotylenchus sp.;	
			Pratylenchus sp.	
Rice	1588	5	Aphelenchoides besseyi	
GER	MANY			
Barley	46	14	Aphelenchus sp.	
ITAL	Y			
Garlic	34	7	Aphelenchus sp.; Aglenchus sp.	
Ginger	1	1	Aphelenchoides sp.	
Sage-prush	1	1	Aphelenchus sp.	
THE	NETHERLAN	D		
Beet	37	7	Aphelenchoides sp.; Ditylenchus sp.	
Bromeliacea	11	10	Ditylenchus equalis, Tylenchus sp.	
Cucumber / Lettuce	12 / 8	1	Aphelenchoides sp.	
<i>Lolium</i> sp.	15	1	Aphelenchoides sp.	
Melon	34	3	Ditylenchus sp.; D. emus; Seinura sp.	
Onion	5	1	Aphelenchus sp.	
Potato	44	13	Aphelenchus sp.; Aphelenchoides sp.;	
			Globodera sp.	
POF	RTUGAL			
Coffee	11	11	Aphelenchoides sp.; Ditylenchus sp.; Ekataphelenchoides sp.	
Dactylis /	2/2	4	Aphelenchoides sp.	
Festuca				
Chickpea /	4 / 25	0		
Triticale				
Latua	Λ	1	Anhalanahaidaa an	

Figure 1. View of the result of nematologycal analysis, using the Computer Information System.

RESULTS

From this study, that used the **Germplasm Computer System**, it was verified, into different introductions of genetic materials, that the **European Countries** could have introduced the new pests into a new area through the germplasm or the commercial material, and the results are shown in **Tables 1 and 2**.

In **7,129**different botanical accessions, 221 accessions were infected by different nematode species, being 3.1 % of contamination (Table 3).

The database of nematological analysis is located at Embrapa Genetic Resources and Biotechnology, Brazil.

The pest interception is very important to diminish the risk of entrance of new nematode species, but the track down of the nematode origin can be supported by the **Germplasm Computer System** and it can be a very good tool for helping the Nematology Laboratory.

The cost benefit analysis demonstrated by the database revealed a great contribution to the Brazilian Agriculture.

Table 1. Imported plant materials from some European Countries without nematodes.

Plant Material N ⁰ Analyse	N⁰ Infected	Detected Nematode
---------------------------------------	-------------------------------	-------------------

LOIUS	4	I	Aprielencholdes sp.
Grape	29	28	Aphelenchoides sp

Table 3. Total imported accessions that came from European Countries.

Countries	Analysed	Infected	Contamination
	Accessions	accessions	(%)
Belgium	79	37	46.84
Denmark	173	35	20.23
England	1,176	15	1.28
Finland	4	1	25
France	3,186	31	0.97
Germany	1,290	14	1.09
Greek	4	0	Zero
Italy	416	9	2.16
The	451	37	8.21
Netherlands			
Portugal	129	30	23.25
Scotland	22	0	Zero
Spain	192	7	3.65
Sweden	6	5	83.33
Wales	1	0	Zero
TOTAL	7,129	221	3.1

1. From this study, using the **GERMPLASM COMPUTER SYSTEM**, it was demonstrated that the donators (**European Institutions**) should take preventive measures to eliminate these parasites from these important genetic materials before the exchange procedures.

2. The cost benefit analysis showed by the database, a great contribution to the Brazilian Agriculture and the pest interception (in the last 22 years) was crucial in minimizing the risks of introduction of new species of nematodes.

G	REEK		
Tomato	4	0	No nematodes
S			
Beans	1	0	No nematodes
Potato	21	0	No nematodes
V	VALES		
White clover	1	0	No nematodes

Universidade Catolica de Brasilia, QS 07-Lote 01 (70.022-900), Taguatinga, DF, Brasil Embrapa Recursos Geneticos e Biotecnologia, C.P. 02372 (70770-900), Brasília, DF, Brasil União Pioneira de Integração Social (UPIS), undergraduate student, Scholarship of Embrapa, Brasilía, DF, Brasil.